马贵军课题组介绍
课题组长 | ![]() |
|
研究介绍 | ![]() |
主要从事开发具有可见光响应的氧化物、硫(氧)化物及氮(氧)化物无机半导体材料,通过结晶优化,形貌控制以及表面修饰等实验手段将这一材料应用于太阳能光催化及光电化学分解水制氢反应,在注重催化剂效率的同时,兼顾成本控制及可行性分析,致力于开发出具有一定工业示范前景的光催化材料和反应。主要方向:(1)开发低价、高效的氧硫(氮)化物光催化材料的合成方法;(2)基于Z-体系理念实现光催化及光电化学分解水全反应;(3)无机半导体光催化分解水反应机理探索。 |
发表文章 | ![]() |
35. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide, S. Chen, T. Hisatomi, G. Ma, Z. Wang, Z. Pan, T. Takata, K. Domen, Chin. J. Cat., 2019, 40, 1668
34. Visible‐Light‐Driven Photocatalytic Z‐Scheme Overall Water Splitting in La5Ti2AgS5O7‐based Powder‐Suspension System, Z. Song, T. Hisatomi, S. Chen, Q. Wang, G. Ma, S. Li, X. Zhu, S. Sun, K. Domen, ChemSusChem, 2019, 12, 1906
33. Efficient hydrogen evolution on (CuInS₂) ₓ (ZnS) ₁₋ ₓ solid solution-based photocathodes under simulated sunlight, J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, M. Katayama, N. Shibata, T. Yamada, K. Domen, Chem. Comm., 2019, 55, 470
32. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting, S. Chen, G. Ma, Q. Wang, S. Sun, T. Hisatomi, T. Higashi, Z. Wang, M. Nakabayashi, N. Shibata, Z. Pan, T. Hayashi, T. Minegishi, T. Takata, K. Domen, J. Mat. Chem. A, 2019, 7, 7415
31. Plate-like Sm2Ti2S2O5 particles prepared by a flux-assisted one-step synthesis for the evolution of O2 from aqueous solutions by both photocatalytic and photoelectrochemical reactions, G. Ma, Y. Kuang, D. H. K. Murthy, T. Hisatomi, J. Seo, S. Chen, H. Matsuzaki, Y. Suzuki, M. Katayama, T. Minegishi, K. Seki, A. Furube, K. Domen, J. Phys. Chem. C,2018, 122, 13492
30. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light, S. Sun, T. Hisatomi, Q. Wang, S. Chen, G. Ma, J. Liu, S. Nandy, T. Minegishi, M. Katayama, K. Domen, ACS Cat., 2018,8, 1690
29. Enhancement of the H2 evolution activity of La5Ti2Cu(S1−xSex)5O7 photocatalysts by coloading Pt and NiS cocatalysts, S. Nandy, T. Hisatomi, G. Ma, T. Minegishi, M. Katayama, K. Domen, J. Mat. Chem. A,2017, 5, 6106
28. Ultrastable low-bias water spitting photoanodes via photocorrosion inhibition and in-situ catalyst regeneration, Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, Nature Energy,2016, 2, 16191
27. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts, G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, K. Domen, J. Phys. Chem. Lett.,2016,7, 3892
26. Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport, Y. Suzuki, R. Singh, H. Matsuzaki, A. Furube, G. Ma, T. Hisatomi, K. Domen, K. Seki, Chem. Phys.,2016, 476, 9
25. Photoanodic and photocathodic behaviours of La5Ti2CuS5O7 electrodes in water splitting reaction, G. Ma, Y. Suzuki, R. Singh, A. Iwanaga, Y. Moriya, T. Minegishi, J. Liu, T. Hisatomi, H. Nishiyama, M. Katayama, K. Seki, A. Furube, T. Yamada, K. Domen, Chem. Sci.,2015, 6, 4513
24. Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer,G. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya, M. Iwase, H. Nishiyama, M. Katayama, T. Yamada, K. Domen, Chem. Comm.,2015, 51, 4302
23. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by electrodeposition-sulfurization method, J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, K. Domen, Angew. Chem. Int. Ed.,2014, 53, 11808
22. Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping, J. Liu, T. Hisatomi, G. Ma, A. Iwanaga, T. Minegishi, Y. Moriya, M. Katayama, J. Kubota, K. Domen, EES,2014, 7, 2239
21. Fabrication of photocatalyst panels and the factors determining their activity for water splitting, A. Xiong, G. Ma, K. Maeda, T. Takata, T. Hisatomi, T. Setoyama, J. Kubota, K. Domen, Cat. Sci. Tech.,2014, 4, 325
20. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies, P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, S. Maekawa, Y. Kobori, J. Kubota, K. Domen, JACS,2012, 134, 2469
19. Semiconductor monolayer assemblies with oriented crystal faces, G. Ma, T. Takata, M. Katayama, F. Zhang, Y. Moriya, K. Takanabe, J. Kubota, K. Domen, CrystEngComm,2012, 14, 59
18. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst, F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li, Chemsuschem,2012, 5, 849
17. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating, G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen, Chem. Phys. Lett.,2011, 501, 619
16. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li, J. Phys. Chem. C,2011, 115, 12202
15. Enhanced visible-Light activity of titania via confinement inside carbon nanotubes, W. Chen, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang, Z. Lai, JACS,2011, 133, 14896
14. Photocatalytic H2 evolution on MoS2/CdS catalyst under visible light irradiation, X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li, J. Phys. Chem. C,2010, 114, 1963
13. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen, Appl. Phys. Express,2010, 3, 101202
12. Preparation, characterization and photocatalytic performance of Zn2-xGeO4-x-3yN2y catalysts under visible light irradiation,B. Ma, X. Zong, G. Ma, J. Yang, P. Ying, C. Li, Chem. Bull.,2010, 6, 556
11. Photocatalytic hydrogen production on CuInS2-ZnS solid solution prepared by solvothermal method, G. Ma, Z. Lei, H. Yan, X. Zong, C. Li, Chin. J. Cat.,2009,30, 73
10. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, J. Cat.,2009, 266, 165
9. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst, X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li, Chem. Comm.,2009, 30, 4536
8. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation, G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, C. Li, J. Cat.,2008, 260, 134
7. Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction, G. Ma, H. Yan, X. Zong, B. Ma, H. Jiang, F. Wen, C. Li, Chin. J. Cat.,2008, 29, 313
6. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li,JACS,2008, 130, 7176
5. Suppressing the CO formation via anion adsorption on Pt/TiO2 for the H2 production from the photocatalytic reforming of methanol, G. Wu, T. Chen, X. Zong, H. Yan, G. Ma, C. Li, J. Cat.,2008, 253, 225
4. Kinetics of photogenerated electrons involved in photocatalytic reaction of methanol on Pt/TiO2, T. Chen, G. Wu, Z. Feng, J. Shi, G. Ma, P. Ying, C. Li, Chin. J. Chem. Phys.,2007, 20, 483
3. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in-situ FTIR and time-resolved IR spectroscopy, T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li, J. Phys. Chem. C,2007, 111, 8005
2. Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination, Z. Lei, G. Ma, M. Liu, W. You, H. Yan, G. Wu, T. Takata, M. Hara, K. Domen, C. Li, J. Cat., 2006, 237, 322
1. Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation, M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen, C. Li, Chem. Comm.,2004, 36, 2192
Book chapter:
G. Ma, T. Hisatomi, K. Domen, “Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting”, in “From Molecules to Materials–Pathway to Artificial Photosynthesis”, Springer Publisher, 2015, pp 1–56,ISBN 978-3-319-13800-8.
Orcid and ResearcherID:
http://orcid.org/0000-0001-7943-9750
https://publons.com/researcher/1677607/guijun-ma/
组内活动 | ![]() |
欢送郑仓晟工程师 |
组内动态 | ![]() |
本组成员 | ![]() |








在组内学习、工作过的人员 | ![]() |

郑仓晟 / Lab Engineer
MS: 2014-2016,纽约州立大学宾汉姆顿分校,材料科学与工程
10.2017-08.2018 Lab Engineer:威斯尼斯人老品牌,威尼斯人游戏平台

周伟成 / 研究生 (2018)
MS: 2018-,威斯尼斯人老品牌/中科院大连化学物理研究所
09. 2018-08. 2019:研究生课程及实验室培训

杨懿 / 本科生
07. 2018-06. 2019:科研实践及毕业论文